71 research outputs found

    Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma

    Get PDF
    Transforming growth factor-beta (TGFβ) signaling in cancer is context dependent and acts either as a tumor suppressor or a tumor promoter. Loss of function mutation in TGFβ type II receptor (TβRII) is a frequent event in oral cavity squamous cell carcinoma (SCC). Recently, heterogeneity of TGFβ response has been described at the leading edge of SCC and this heterogeneity has been shown to influence stem cell renewal and drug resistance. Because exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways we investigated whether exosomes contain components of the TGFβ signaling pathway and whether exosome transfer between stromal fibroblasts and tumor cells can influence TGFβ signaling in SCC. We demonstrate that exosomes purified from stromal fibroblasts isolated from patients with oral SCC contains TβRII. We also demonstrate that transfer of fibroblast exosomes increases TGFβ signaling in SCC keratinocytes devoid of TβRII which remain non-responsive to TGFβ ligand in the absence of exosome transfer. Overall our data show that stromal communication with tumor cells can direct TGFβ signaling in SCC

    BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells

    Get PDF
    TGF-β family members play a relevant role in tumorigenic processes, including hepatocellular carcinoma (HCC), but a specific implication of the Bone Morphogenetic Protein (BMP) subfamily is still unknown. Although originally isolated from fetal liver, little is known about BMP9, a BMP family member, and its role in liver physiology and pathology. Our results show that BMP9 promotes growth in HCC cells, but not in immortalized human hepatocytes. In the liver cancer cell line HepG2, BMP9 triggers Smad1,5,8 phosphorylation and inhibitor of DNA binding 1 (Id1) expression up- regulation. Importantly, by using chemical inhibitors, ligand trap and gene silencing approaches we demonstrate that HepG2 cells autocrinely produce BMP9 that supports their proliferation and anchorage independent growth. Additionally, our data reveal that in HepG2 cells BMP9 triggers cell cycle progression, and strikingly, completely abolishes the increase in the percentage of apoptotic cells induced by long-term incubation in low serum. Collectively, our data unveil a dual role for BMP9, both promoting a proliferative response and exerting a remarkable anti-apoptotic function in HepG2 cells, which result in a robust BMP9 effect on liver cancer cell growth. Finally, we show that BMP9 expression is increased in 40% of human HCC tissues compared with normal human liver as revealed by immunohistochemistry analysis, suggesting that BMP9 signaling may be relevant during hepatocarcinogenesis in vivo. Our findings provide new clues for a better understanding of BMPs contribution, and in particular BMP9, in HCC pathogenesis that may result in the development of effective and targeted therapeutic interventions

    Risk prediction models for head and neck cancer: a rapid review

    Get PDF
    Background: Cancer risk assessment models are used to support prevention and early detection. However, few models have been developed for head and neck cancer (HNC). Methods: A rapid review of Embase and MEDLINE identified n = 3045 articles. Following dual screening, n = 14 studies were included. Quality appraisal using the PROBAST (risk of bias) instrument was conducted, and a narrative synthesis was performed to identify the best performing models in terms of risk factors and designs. Results: Six of the 14 models were assessed as “high” quality. Of these, three had high predictive performance achieving area under curve values over 0.8 (0.87–0.89). The common features of these models were their inclusion of predictors carefully tailored to the target population/anatomical subsite and development with external validation. Conclusions: Some existing models do possess the potential to identify and stratify those at risk of HNC but there is scope for improvement

    Preclinical Evaluation of AZ12601011 and AZ12799734, Inhibitors of Transforming Growth Factor β Superfamily Type 1 Receptors.

    Get PDF
    The transforming growth factor β (TGFβ) superfamily includes TGFβ, activins, inhibins, and bone morphogenetic proteins (BMPs). These extracellular ligands have essential roles in normal tissue homeostasis by coordinately regulating cell proliferation, differentiation, and migration. Aberrant signaling of superfamily members, however, is associated with fibrosis as well as tumorigenesis, cancer progression, metastasis, and drug-resistance mechanisms in a variety of cancer subtypes. Given their involvement in human disease, the identification of novel selective inhibitors of TGFβ superfamily receptors is an attractive therapeutic approach. Seven mammalian type 1 receptors have been identified that have context-specific roles depending on the ligand and the complex formation with the type 2 receptor. Here, we characterize the biologic effects of two transforming growth factor β receptor 1 (TGFBR1) kinase inhibitors designed to target TGFβ signaling. AZ12601011 [2-(2-pyridinyl)-4-(1H-pyrrolo[3,2-c]pyridin-1-yl)-6,7-dihydro-5H-cyclopenta[d]pyrimidine]; structure previously undisclosed] and AZ12799734 [4-({4-[(2,6-dimethyl-3-pyridinyl)oxy]-2-pyridinyl}amino)benzenesulfonamide] (IC50 = 18 and 47 nM, respectively) were more effective inhibitors of TGFβ-induced reporter activity than SB-431542 [4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide] (IC50 = 84 nM) and LY2157299 [4-[2-(6-methylpyridin-2-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl]quinoline-6-carboxamide monohydrate]] (galunisertib) (IC50 = 380 nM). AZ12601011 inhibited phosphorylation of SMAD2 via the type 1 receptors activin A receptor type 1B (ALK4), TGFBR1, and activin A receptor type 1C (ALK7). AZ12799734, however, is a pan TGF/BMP inhibitor, inhibiting receptor-mediated phosphorylation of SMAD1 by activin A receptor type 1L, bone morphogenetic protein receptor type 1A, and bone morphogenetic protein receptor type 1B and phosphorylation of SMAD2 by ALK4, TGFBR1, and ALK7. AZ12601011 was highly effective at inhibiting basal and TGFβ-induced migration of HaCaT keratinocytes and, furthermore, inhibited tumor growth and metastasis to the lungs in a 4T1 syngeneic orthotopic mammary tumor model. These inhibitors provide new reagents for investigating in vitro and in vivo pathogenic processes and the contribution of TGFβ- and BMP-regulated signaling pathways to disease states

    Clinicopathological Determinants of Recurrence Risk and Survival in Mucinous Ovarian Carcinoma

    Get PDF
    Mucinous ovarian carcinoma (MOC) is a unique form of ovarian cancer. MOC typically presents at early stage but demonstrates intrinsic chemoresistance; treatment of advanced-stage and relapsed disease is therefore challenging. We harness a large retrospective MOC cohort to identify factors associated with recurrence risk and survival. A total of 151 MOC patients were included. The 5 year disease-specific survival (DSS) was 84.5%. Risk of subsequent recurrence after a disease-free period of 2 and 5 years was low (8.3% and 5.6% over the next 10 years). The majority of cases were FIGO stage I (35.6% IA, 43.0% IC). Multivariable analysis identified stage and pathological grade as independently associated with DSS (p p < 0.001). Grade 1 stage I patients represented the majority of cases (53.0%) and demonstrated exceptional survival (10 year DSS 95.3%); survival was comparable between grade I stage IA and stage IC patients, and between grade I stage IC patients who did and did not receive adjuvant chemotherapy. At 5 years following diagnosis, the proportion of grade 1, 2 and 3 patients remaining disease free was 89.5%, 74.9% and 41.7%; the corresponding proportions for FIGO stage I, II and III/IV patients were 91.1%, 76.7% and 19.8%. Median post-relapse survival was 5.0 months. Most MOC patients present with low-grade early-stage disease and are at low risk of recurrence. New treatment options are urgently needed to improve survival following relapse, which is associated with extremely poor prognosis

    The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions

    Get PDF
    Background: Human papillomavirus (HPV) has long been proposed as a cofactor in the pathogenesis of cutaneous squamous cell carcinoma (cSCC). More recently, the striking clinico-pathological features of cSCCs that complicate treatment of metastatic melanoma with inhibitors targeting BRAF mutations (BRAFi) has prompted speculation concerning a pathogenic role for oncogenic viruses. Here, we investigate HPV and human polyomaviruses (HPyV) and correlate with clinical, histologic, and genetic features in BRAFi-associated cSCC. Materials and Methods: Patients receiving BRAFi treatment were recruited at Barts Health NHS Trust. HPV DNA was detected in microdissected frozen samples using reverse line probe technology and degenerate and nested PCR. HPV immunohistochemistry was performed in a subset of samples. Quantitative PCR was performed to determine the presence and viral load of HPyVs with affinity for the skin (HPyV6, HPyV7, HPyV9, MCPyV, and TSPyV). These data were correlated with previous genetic mutational analysis of H, K and NRAS, NOTCH1/2, TP53, CDKN2A, CARD11, CREBBP, TGFBR1/2. Chromosomal aberrations were profiled using single nucleotide polymorphism (SNP) arrays. Results: Forty-five skin lesions from seven patients treated with single agent vemurafenib in 2012–2013 were analyzed: 12 cSCC, 19 viral warts (VW), 2 actinic keratosis (AK), 5 verrucous keratosis/other squamoproliferative (VK/SP) lesions, one melanocytic lesion and 6 normal skin samples. Significant histologic features of viral infection were seen in 10/12 (83%) cSCC. HPV DNA was detected in 18/19 (95%) VW/SP, 9/12 (75%) cSCC, 4/5 (80%) SP, and 3/6 (50%) normal skin samples and in 1/12 cases assessed by immunohistochemistry. HPyV was co-detected in 22/30 (73%) of samples, usually at low viral load, with MCPyV and HPyV7 the most common. SNP arrays confirmed low levels of chromosomal abnormality and there was no significant correlation between HPV or HPyV detection and individual gene mutations or overall mutational burden. Conclusion: Despite supportive clinicopathologic evidence, the role for HPV and HPyV infection in the pathogenesis of BRAFi-induced squamoproliferative lesions remains uncertain. Synergistic oncogenic mechanisms are plausible although speculative. Nonetheless, with the prospect of a significant increase in the adjuvant use of these drugs, further research is justified and may provide insight into the pathogenesis of other BRAFi-associated malignancies

    A Unique Panel of Patient-Derived Cutaneous Squamous Cell Carcinoma Cell Lines Provides a Preclinical Pathway for Therapeutic Testing

    Get PDF
    Background: Cutaneous squamous cell carcinoma (cSCC) incidence continues to rise with increasing morbidity and mortality, with limited treatment options for advanced disease. Future improvements in targeted therapy will rely on advances in genomic/transcriptomic understanding and the use of model systems for basic research. We describe here the panel of 16 primary and metastatic cSCC cell lines developed and characterised over the past three decades in our laboratory in order to provide such a resource for future preclinical research and drug screening. Methods: Primary keratinocytes were isolated from cSCC tumours and metastases, and cell lines were established. These were characterised using short tandem repeat (STR) profiling and genotyped by whole exome sequencing. Multiple in vitro assays were performed to document their morphology, growth characteristics, migration and invasion characteristics, and in vivo xenograft growth. Results: STR profiles of the cSCC lines allow the confirmation of their unique identity. Phylogenetic trees derived from exome sequence analysis of the matched primary and metastatic lines provide insight into the genetic basis of disease progression. The results of in vivo and in vitro analyses allow researchers to select suitable cell lines for specific experimentation. Conclusions: There are few well-characterised cSCC lines available for widespread preclinical experimentation and drug screening. The described cSCC cell line panel provides a critical tool for in vitro and in vivo experimentation

    BMP‐2 signaling and mechanotransduction synergize to drive osteogenic differentiation via YAP/TAZ

    Get PDF
    Growth factors and mechanical cues synergistically affect cellular functions, triggering a variety of signaling pathways. The molecular levels of such cooperative interactions are not fully understood. Due to its role in osteogenesis, the growth factor bone morphogenetic protein 2 (BMP‐2) is of tremendous interest for bone regenerative medicine, osteoporosis therapeutics, and beyond. Here, contribution of BMP‐2 signaling and extracellular mechanical cues to the osteogenic commitment of C2C12 cells is investigated. It is revealed that these two distinct pathways are integrated at the transcriptional level to provide multifactorial control of cell differentiation. The activation of osteogenic genes requires the cooperation of BMP‐2 pathway‐associated Smad1/5/8 heteromeric complexes and mechanosensitive YAP/TAZ translocation. It is further demonstrated that the Smad complexes remain bound onto and active on target genes, even after BMP‐2 removal, suggesting that they act as a “molecular memory unit.” Thus, synergistic stimulation with BMP‐2 and mechanical cues drives osteogenic differentiation in a programmable fashion
    corecore